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Abstract—This paper presents a theoretical treatment of laminar flow heat transfer in circular tubes for a
temperature-dependent non-Newtonian fluid for which the relationship between the shear stress, 7,

and the shear rate,?, can be described by an equation of the form

Gz,

v =1, + K(Ty"

where 1, is a yield stress, n is a constant and K(T) is a function of temperature. This model can therefore
cater for both power-law and Bingham plastic behaviour. The two boundary conditions of constant wall
temperature and constant wall heat flux are considered for both heating and cooling situations. The
computed results are presented by plotting a Nusselt number as a function of the Graetz number with
dimensionless groups specifying the temperature dependence effect, the rheological properties and the wall
conditions as parameters. This method of presentation is convenient for engineering design purposes.
Temperature profiles, velocity profiles and the pressure drop can also be determined.

NOMENCLATURE

tube radius;

Brinkmann number, #"* 1K /kTa" "}
[dimensionless] ;

specific heat;

Graetz number, WC,/kx [dimension-
less];

mean heat transfer coefficient for
constant wall temperature ;

local heat transfer coefficient for
constant wall heat flux;

thermal conductivity;

function of temperature defined by
equation (8);

value of K(7) at inlet temperature T;;
flow behaviourindex [ dimensionless] ;
mean Nusselt number, 2ahr/k
[dimensionless];
local Nusselt
[dimensionless];
pressure;

wall heat flux;
radial distance coordinate;

number, 2ah/k

R, r/a [dimensionless];

T temperature ;

T inlet temperature ;

T,, wall temperature ;

T bulk outlet temperature;

u, velocity;

i, mean velocity ;

il;, mean velocity at the tube entrance ;

i, mean velocity at axial distance, x;

U, u/u [dimensionless];

W, mass flow rate;

x, axial distance coordinate;

X, kx/piia*C, = n/Gz [dimensionless].

Greek symbols

B, parameter representing the tem-
perature dependence effect, BT,
[dimensionless];

B constant characterising temperature
dependent properties;

7, shear rate ;

¢, T./T; [dimensionless];

¥, 4,,a/kT, [dimensionless] ;
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o, fluid density ;
T, shear stress;
Ton wall shear stress;

9, (T — T)/T; [dimensionless];
85, (T, — T)/T; [dimensionless].

1. INTRODUCTION

LAMINAR heat transfer to non-Newtonian fluids
in tubes is a problem of considerable industrial
significance and has received much attention
in the past.

Asymptotic Nusselt numbers for a variety
of non-Newtonian fluids have been derived by
Beek and Eggink [1] for both constant wall
temperature and constant wall heat flux as
boundary conditions. These solutions assume
that the rheological properties of the fluid are
independent of temperature and are only appli-
cable to the region far removed from the tube
entrance where both fully developed velocity
and temperature profiles exist. Several other
workers have derived solutions for the mean and
local Nusselt numbers by assuming that the
rheological properties are independent of tem-
perature. For example, power-law fluids have
been considered by Lyche and Bird [2] and also
by Whiteman and Drake [3], Bingham plastics
by Hirai [4] and also by Wissler and Schecter
[5), Prandtl-Eyring fluids by Schenk and Van
Laar [6]. Pigford [7] and Metzner et al. [8,9]
have extended the Leveque approximation to
give useful approximate solutions for heat
transfer with constant wall temperature for a
number of time-independent non-Newtonian
fluids.

The restriction that the fluid rheological
properties are independent of temperature can
be a serious assumption since, in many cases,
this effect has a major influence on heat transfer.
Several attempts [8-11] have been made to take
this effect into account and approximate
solutions to the heat transfer problem which
utilize an empirical correction factor to account
for the temperature dependence of the fluid
consistency, have been obtained. Christiansen
et al. [12,13] have produced more exact
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solutions by solving the problem numerically.
Their results are presented as a series of graphs
of the mean Nusselt number plotted against the
Graetz number with dimensionless quantities
representing the rheology of the fluid as para-
meters for the boundary condition of constant
wall temperature. Jensen [14] has carried out
similar work for ideal Bingham plastics.

The work reported here considers heat transfer
to a generalized Bingham plastic in tubes with
constant wall temperature or constant wall heat
flux. The effect of the temperature dependence
of the fluid consistency is taken into account.
This type offluid model also caters for Newtonian
behaviour, power-law behaviour and ideal
Bingham plastic behaviour. The results of the
calculations are presented graphically in terms
of dimensionless groups and as such should be
convenient for engineering design purposes.

2. FORMULATION OF THE PROBLEM
This work is concerned with heat transfer to
non-Newtonian fluids, the rheological behaviour
of which can be approximated by a temperature-
dependent generalized Bingham plastic model
of the form

T =1, + K(TW"; T>T,

y =0

(D

where 7 is the shear stress, 7, is the yield stress
and is assumed to be independent of temperature,
7 is the shear rate, K(T) is a function of tempera-
ture, 7. and n is a temperature-independent
exponent which is less than unity for shear
thinning materials and greater than unity for
shear thickening materials. The assumption
that the yield stress, t,, is independent of
temperature was also adopted by Jensen [14]
who suggested that this effect is small compared
with the temperature dependency of the fluid
consistency and can thus be ignored. A possible
explanation for this is that the yield stress is
mainly dependent on a mechanical locking of
the fluid which is essentially temperature in-
dependent. It is anticipated that the model will
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LAMINAR HEAT TRANSFER

adequately describe the behaviour of many
fluids of commercial interest.

The problem of heat transfer in laminar flow
in straight tubes will be considered for the two
boundary conditions of constant wall tempera-
ture and constant wall heat flux which, although
idealized situations, are of relevance in the
design of much heat transfer equipment.

The following analysis is subject to certain
constraints namely :

{a) The flow is laminar and steady.

(b) The fluid heat capacity, C,, thermal con-
ductivity, k, and density, p, are indépendent
of temperature and pressure.

(c) Isothermal flow is fully developed at the
entrance to the heated section and the fluid
temperature at this point is uniform and
constant.

(d) The radial velocity profile within the heated
section will change as a result of changes in
the rheological properties with temperature
but it will be assumed that radial velocities
and axial velocity gradients will be small and
can be neglected.

(¢) Transfer of energy by conduction in the axial
direction may be negiected.

() Thermal energy generation within the fluid
by viscous dissipation or other means is
negligible.

Constraints (a)-(¢) are not unduly restrictive
in practice for many engineering problems.
Constraint (f) is relaxed later in the paper.

Equations of motion and energy

With the above assumptions the equation of
motion simplifies to

op 10
“%TTE (r) 2

where (Jp/0x) is the axial pressure gradient and
7 is the shear stress at radius r. The corresponding
energy equation is

a2 ()
"""ax""rar 'ar (3)
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where u and T are the velocity and temperature
respectively at radius r for a particular axial
distance x.

The equation of motion, ie. equation (2), can
be integrated by taking (Op/dx) independent of

r to give

t=lz, @
a

If we introduce the following dimensionless
quantities

U=ufi

R=r/a

X = kx/pua*C, = 1/Gz ©
0=(T-TT

we get, from equation (3), the energy equation in
the following dimensionless form

o8 1 ¢ (.06
Also equation (4) becomes
T = Rrt,,. )

Rheological equation for the fluid

Before the problem can be solved it is necessary
to specify the form of K(T). The form used in
this work is similar to that used by Mizushina
and Kuriwaki [10] and has been shown to be
reasonable for many materials over the tem-
perature ranges often encountered in industrial
processes. It is given by

{1+ B(T-D}
where K; is the value of K(T) at the fluid inlet
temperature T; and B; is a constant which

characterizes the temperature dependent proper-
ties of the fluid. Hence the rheological behaviour

KD ®

of the material is described by
t=1,+ K; -———*———-‘;’ "; T>71
714+ BT -T) )

'5’:0 N Té‘ly.
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Equation (6) was solved for the two boundary
conditions of constant wall temperature and
constant wall heat flux. This is discussed in the
following sections.

BOUNDARY CONDITIONS

Constant wall temperature
The boundary conditions for this problem are :

At the tubeinlet 6 =0 at X =0forall R

Atthetube wall 0 = (T,/T, — 1) (10)
at R=1forall X

where T, is the constant wall temperature.

Constant wall heat flux
The boundary conditions for this case are:
Atthetubeinlet # =0 at X = Oforall R

At the tube wall g,, = kT, (%%)

at = 1forall X

where g,, is the constant wall heat flux.

(1n

SOLUTION OF THE PROBLEM

Velocity profile
Substituting for 7 in equation (7) and noting
that y = —odu/0r gives

—oufor 1" )
Ty + KiW] =Rz,; >1, {12)

Rearranging and putting dr = adR gives

canmafZ) (- 2)"

{1+ B{T - )}dR.  (13)

Equation (7) can be applied to the radial position
at which the yield stress occurs. Thus, if r, is
this radius, equation (7) may be rewritten as

R, = 1,1, (14)
where R, = r,/a.
From equation (5) we get that
(T-T) =0T, (15)
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and on substituting equation (14) and (15) into
equation (13) we get

1/n
~du = a(iK‘l) (R — R)'™(1 + BOHdR  (16)

where
B =BT a7
Integrating equation (16), assuming no slip
at the wall, gives
i

1/n
u= a(-;,i) 5(1 + BO(R — R)'™dR;

i
R T> 1,

(18)

Equation (18) refers to that part of the fluid
which is in shear flow. The portion of the fluid
for which 7 S 1, flows as a solid plug i.e.

(19)

The plug velocity, i.e. the value of u at R = R,
is obtained by carrying out the integration in
equation (18) and putting R = R, into the
resulting equation. Equation (18) may be written
as

ufatr <r) = ufatr).

T \Mm
o) @
where
= :E(l + BO(R ~ RY"dr; t>1, (21
and

11 - ll (atR = Ry);
The mean velocity through the pipeis given by

TSI,

a

= %J‘ urdr

a
o}

22

which after substitution for ¥ and R becomes

Tw X/n1
a:m(z) jI,RdR.

0

23
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This may be written as

_ Tw \
= M(—E)Iz (24)
where
1
I, = [ I,RdR. (25
1]

Hence from equations (20) and (25) we get

U=ufi=1,721,. (26)
This set of equations for determining the velocity
profile must satisfy the equation of continuity.
This may be written in terms of the tube inlet
conditions and conditions at a point a distance
x down the tube as
G, =@, 27
where i, is the mean velocity at inlet and i, is the
mean velocity at distance x down the tube.
It is obvious from equations (21), (24) and (25)
that for & to remain constant down the heated
section as the temperature and hence 6 changes,
the value of 7,, must alter. By substituting for u
from equation (24), equation (27) may be written

(ti"y); = (zi*1,),. (28)

By dividing both sides of equation (28) by t; we

get
1\ _ (1
Rj)i \Rj),

The quantity (I,/R;); representing the conditions
at the tube inlet is obtained from the isothermal
velocity profile and is a constant for a particular
value of n and 1,. Since the value of 7,, changes
during heat transfer, then the value of R,
(i.e. 7,/7,) must also change (r, being assumed
constant for a given problem). Also, since the
determination of the velocity profile depends
on the value of R, and vice versa, an iteration
procedure was adopted to obtain the value of
U at each axial position down the heated section.
Substituting for U in equation (6) gives

1,90 13 Rae)
21,3X ROR\ oR/

(29)

(30)
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SOLUTIONS

The equations were solved numerically to
yield solutions as functions of a number of
dimensionless parameters, viz:

Constant wall temperature

U, x.0% x = f[Gz n, (1,/t); B. T/ T] (31
for the boundary conditions described earlier.
The quantities n and 7, are obtained by rheo-
logical measurements and the value of 7,, at the
tube inlet is calculated for the particular flow
rate required. Subscript i refers to conditions
at the tube inlet.

(T,/T) is designated ¢ and for heating ¢ > 1
and for cooling ¢ < 1.

Constant wall heat flux

Ug. x- Or x =f1Gz n,(1,/1.), B, (qa/kT)]  (32)
for the boundary conditions described earlier.
The quantity (g,,a/kT) represents the constant
wall heat flux boundary condition and is a
measure of the dimensionless temperature
gradient at the tube wall, ie. (06/9T),. It is
designated ¥ and for heating ¢ > 0 and for
cooling ¥ < 0.

The numerical technique used to solve
equation (30) is described in detail elsewhere
[15]. It consisted of a Crank-Nicholson, Thomas
algorithm implicit finite-difference scheme using
100 radial increments and an initial axial step
length of 107°. It was possible to vary these
step lengths to allow smaller increments to be
used near the tube inlet where changes occur
most rapidly and larger step lengths to be used
further downstream. At each axial position an
iteration procedure based on equation (29) was
set up to calculate R, and hence the velocity
profile.

Definition of Nusselt numbers

It is useful to present the results of heat
transfer calculations by plotting a Nusselt
number against the Graetz number, Gz.
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(a) Constant wall temperature. For this case
a mean Nusselt number can be defined as

Nuy = 2ahy/k (33)

where h is the heat transfer coefficient, the
subscript Tindicates constant wall temperature
and the bars denote mean values. The heat
transfer coefficient Ay for a tube of length x is
defined in terms of the terminal temperatures as

h‘r = ch(T:) - D
2nax{T, — $(T; + To)}
where T, is the bulk outlet (ie. cup mixing)

temperature, and W is the fluid mass flow rate.
Further we have that

(34)

WCTy - T) = ZnC,,pE (T —Tydr (39

hence

2pC, (r(T — T)dr
N = b
Nir = lT, ST + o)

By substituting for 6,R and Gz as given by
equation (5) and noting that

(36)

(37

we finally get

Gz__ 0
n ow - %00
where 6, is the dimensionless bulk outlet
temperature, i.e. §, = (T, — T)/T;, which can be
shown to be given by [15]

Nuy = (38)

By = }RG(II/IZ)dR. (39
0

(b) Constant wall heat flux. For this case it is
useful to define a local Nusselt number as

Nu, = 2ah/k (40)

where subscript g denotes constant wall heat
flux. The local heat transfer coefficient h, is
defined as

G. FORREST and W. L. WILKINSON

Ty -
hy =k (‘:‘) A T, - To) (41)
T Jwl
where (¢T/cr),, is the wall temperature gradient
at axial position, x. Thus equation (40) becomes

eT\ —
Nu, = 2a(~5;>w//( T, - Ty

which in terms of the dimensionless quantities
described earlier is
2

Nuy, = 0. — 0, ¥
The computed Nusselt numbers as defined by
equations (38) and (42) are plotted against the
Graetz number for a range of values of the
dimensionless parameters, n, (7,/7,); f and ¢ or
Y. These parameters describe the particular
problem to be investigated and are used as
input data for the computer program which was
developed [15] to carry out the numerical
solutions.

(42)

DISCUSSION OF RESULTS
The computed results are shown graphically
in Figs. 1-15 and the main features are discussed
below. The quantity (r,/1,); is designated R,,.

(a) Constant wall temperature

For this case the heat transfer results are
presented graphically as plots of Nuy vs Gz.

Fluid consistency independent of temperature.
Figure 1 shows the effect of the parameter.
R,. ie. (1,/7,), on heat transfer to fluids with
n = 10 (ie. Bingham plastic materials). Since
the fluid consistency is constant the fluid velocity
profile remains constant at its isothermal value
during heat transfer. Isothermal velocity profiles
forn = 1-0and R,, = 0,0-5 and 0-7 are shown in
Fig. 2. It can be seen that for a given value of n,
as R,, increases, the velocity profile becomes
flatter, ie. velocity gradients are increased in
the tube wall region and decreased near the tube
centre. This increase in the velocity gradient
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0? n-lo.ﬁi;-O. 05,07
10 | -
Moy
| L i |
1 © ©o? e 10* ©°
Gz
F16. 1. Niiy vs Gz for the heating and cooling of temperature-
independent Bingham plastics with constant temperature at
the tube wall.
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Fi1G. 2. Isothermal velocity profiles for Bingham plastics in
laminar flow.
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| ! 1 I
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FIG. 3. Niiy vs Gz for the heating and cooling of temperature-
independent generalized Bingham plastics with constant
temperature at the tube wall,
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near the tube wall enhances the heat transfer
rate as shown by the increase in Nuy-at a given
value of Gz as R,, increases, in Fig. 1.

Figure 3 shows the effect of n on heat transfer
for a value of R,, = 0-5. The isothermal velocity
profiles for a number of values of n with R, = 0-5
are shown in Fig 4. As can be seen, as n decreases

isothermal veiocity protiles

R,+05
| 6~ n=20
74 A
r nel-0 n=05
110+
U =
" s i i 1 i i "
o] [¢2-] -0

F1G. 4. Isothermal velocity profiles for generalized Bingham
plastics in laminar flow.

for a given value of R,, the velocity gradients are
again increased in the wall region leading to an
increase in the heat transfer rate as shown in
Fig. 3.

Fluid consistency dependent on temperature.
For this situation the velocity profile changes
during heat transfer. For heating, i.. ¢ > 1, the
increase in temperature in the wall region
decreases the fluid consistency here. This leads
to increased velocities near the tube wall
Also for situations where R, > 0, i.e. where a
section of fluid near the tube centre flows as a
solid plug, since the velocity profile is changing
the value of 7, and hence R, must also be
changing. For heating, although the shear rate,
Y, (i.e. the velocity gradient) increases near the
wall during heat transfer, the constraint of
constant wall temperature means that the shear
rate actually at the wall decreases. Thus it can
be seen from equation (1) that the wall shear
stress decreases and so the value of R,, which
represents the size of the solid flowing plug,
increases during heating (i.e. R, increases as
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30

Constont T, el 2
1205 Rs05
A0

20

YT T T T T

o os 10
R

FiG. 5. Development of the velocity profile during the

heating of a temperature-dependent generalized Bingham

plastic (n = 0-5, t,/1,, = 0-5) with constant temperature at

the tube wall.

Gz decreases). This is shown in Fig. 5. Far
downstream, i.e. where Gz is small the tempera-
ture becomes uniform across the tube at a value
approaching T, and the velocity profile is then
fully developed. If the fluid had had no yield
stress, i.e. t, and hence (t,/t,) is equal to zero,
the velocity profile would have reverted back to
its isothermal value when the temperature
became uniform across the tube. However, the

30+
i Constant T, $ =091
=08, 05
20 B-0
| 6z=433
Gz -’
U -
[ Gz =274000
[N ot
A N f " I L i L L
0 o5 o
R

Fi1G. 6. Development of the velocity profile for the cooling of

a temperature-dependent generalized Bingham plastic

(n =05, 7,/r, = 05 with constant temperature at the
tube wall.



LAMINAR HEAT TRANSFER 2385

2 n*05, R, «05,$20912, B=0.10

\

L
! 10 102 103 104 03

F1G. 7. Nity vs Gz for the heating and cooling of a temperature-
dependent gencralized Bingham plastic (n = 0-5, 7,/z,, = 0-5)
with constant temperature at the tube wall.

o) 7120, R:05,$:09112,8:00

FiG. 8. Nu; vs Gz for the heating and cooling of a temperature-
dependent generalized Bingham plastic (n = 2.0,1,/1, = 0-5)
with constant temperature at the tube wall.

|02F n=10 ]

R,*0, 05,07

Nug
10

) 1 4 L
' 10 10?2 10° 04 10°
Gz

F1G. 9. Nu, vs Gz for the heating and cooling of temperature-
independent Bingham plastic with constant heat flux at the
tube wall.
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' 10 10?2

|°3 104 |°5

Gz

Fi1G. 10. Nu, vs Gz for the heating and cooling of temperature-
independent generalized Bingham plastics with constant
heat flux at the tube wall.

existence of a yield stress and the change in 1,,
changes the size of the flowing plug and so when
1, # 0 the exit velocity profile is not the same
as that at the inlet to the heated section. For
cooling the wall shear stress increases during heat
transfer and so R,, and hence the size of the
flowing plug, decreases with decreasing Graetz
pumber and also the velocity gradients in the
wall region are decreased with decreasing G:z.
These effects are shown in Fig. 6. The increase
in velocity gradients in the wall region during
heating enhances heat transfer while the decrease
during cooling retards the heat transfer rate as
shown in Figs. 7 and 8 for R, = 05 with
n = 05 and 2-0.

(b) Constant wall heat flux

For this case the heat transfer results are
presented graphically as plots of Nu, vs Gz.

Fluid consistency independent of temperature.
The effect of Ry, on the heat transfer results is
shown in Fig. 9. As for the constant wall
temperature case the increase in velocity
gradients in the wall region as R, increases,
increases the heat transfer rate, and hence at a
given value of Gz, the value of Nu, is increased.
Figure 10 shows the effect of n on the heat
transfer results for R,, = 0-5. Again. as for the
constant wall temperature case, the velocity
gradients in the wall region, and hence the heat

transfer rate, increase as n decreases. Far
downstream (Gz small) the shape of the fluid
temperature profile becomes constant and the
value of (4,, — 6,) thus becomes constant. It can
be seen from equation (42) that when this
occurs, the value of Nu, becomes a constant and
some typical values are shown below.

Table 1. Asymptotic local Nusselt
numbers ut Gz < 1

n R, Nu,
05 05 5604
1-0 05 5136
20 05 4-811
1-0 07 5863

Fluid consistency dependent on temperature.
For this case the velocity profiles and the size
of flowing plug change during heat transfer in a
way similar to that of the constant wall tempera-
ture case. This gives an increase in heat transfer
rates for heating, ¢ > 0, and a decrease for
cooling, ¥ < 0. The development of the velocity
profiles for y = + 0-1isshownin Figs. 11 and 12
and the heat transfer results for these cases in
Figs. 13 and 14. The effect of the temperature
dependent fluid consistency on heat transfer is
not as marked for the constant wall heat flux
case as it was for the constant wall temperature



LAMINAR HEAT TRANSFER 2387

Constont q,,
n=05,9--0,8+10
Conetont g, =05
. =05, y=0'1, B+10 Gz +133,56:2,9780
|.5L R’,-O-5 16 iy .
G2+104,33, 9780 L L[~
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o +
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FiG. 11. Development of the velocity profile during the Fic. 12. Development of the velocity proﬁ}e during the

heating of a temperature-dependent generalized Bingham  cooling of a temperature-dependent generalized Bingham

plastic (n = 0-5, 7,/1,, = 0-5) with constant heat flux at the  plastic (n = 0-5, 1,/t. = (-5) with constant beat flux at the
tube wall. tube wall.

P05 ,R,*05

Mo | (y=01,810)

10 -
B=0 * (¢ »-01,B*10)
1 ] Il 1
' 10 0?2 103 0* 0°
Gz
F16. 13. Nu, vs Gz for the heating and cooling of a
temperature-dependent  generalized Bingham  plastic
(n = 0:5, 1/t = 0-5) with constant heat flux at the tube wall.
L
' n20,R,205 7
{y=0-1, B210)
Moo |- —
—— \
B-o0 (¥>-01,8110)
| J | |
I 0 02 0% 104 105
Gz

FiG. 14. Nu, vs Gz for the heating and cooling of a
temperature-dependent  generalized Bingham  plastic
(n = 2:0. 7,/1,, = 0-5) with constant heat flux at the tube wall.
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situation. This is because unlike the constant wall
temperature case the tube wall is not subjected
to a sudden large increase in temperature at the
start of the heated section but instead undergoes
a gradual increase under the influence of the
constant wall heat flux. Thus the curves for
f =0 and § =10 on Figs. 13 and 14 do not
differ greatly.

The discontinuation of the curves for y < 0
on Figs. 13 and 14 is due to the fact that using
the fluid inlet temperature as the reference
temperature in equation (8) implies that the
rheological model, i.e. equation (1), can not be
used for situations where there is a large
amount of heat removed at the wall. To cater
for all conditions a new reference temperature,
T.« lower than any other temperature obtained
would be necessary, and hence two parameters;
q.,8/kT,« and T;/T,, would be required to
describe the wall and inlet conditions. (N.B. for
constant wall temperature these parameters
would be T,/T,, and T/T,,.)

Far downstream the value of Nu, for § # 0
does not become constant since the temperature,
and hence the fluid consistency and velocity
profiles, are continually changing.

103
$=12,8+10,8r= xm%
102 4
/)
e
i //‘/

10 —

n=-0,R =05

///F@n-z.&o,ar =10}

($=0 91,810,
8r =1-0)
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Viscous dissipation

When fluids which are extremely viscous are
sheared, large amounts of heat can be generated
due to the viscous dissipation of energy.
Although this effect has not been included in
this report it has been considered elsewhere [15].
For this situation the energy equation becomes

éT ko (0T du
"Cv“a=:5;(’57>‘f(é;) “

where the second term on the right represents
the energy dissipation due to viscous shearing.
This may be written in terms of the dimensionless
variables described earlier as

11,00 10 Rae>
21,X RéR\ @R

— 1/n
B [R(R R) (1 + BH)} )

112|+ 12n+ 1

where

ﬁ"+ lKi

Br = ka,a"'l

(45)

and represents the magnitude of the shear
heating effect. Solutions to equation (44) were

(B=Br »0) 4

L
1 10 102

i |
103 0 10°

FI1G. 15. Nuy vs Gz for heat transfer to a Bingham plastic
(n = 1.0, R,, = 0-5) when the effects of viscous dissipation
are significant.
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obtained for all situations where 7, = 0 and for
all cases where 7, > 0 with § = 0. However,
when both 1, and § are non-zero, ie. the fluid
considered exhibited a yield stress and its
consistency was dependent on temperature,
solutions were not always possible at low
values of the Graetz number due to instability
difficulties with the numerical techniques used
[15]. Some typical examples of some of the
solutions that were obtained are shown in
Fig. 15 in which the broken lines represent
negative Nusselt numbers.

COMPARISON WITH PREVIOUS WORK

The results of the present work have been
shown to be in excellent agreement with those of
other workers for situations where the yield
stress is zero [15]. There are little data available
to check the results for situations where 7, is not
zero but some comparisons with other work
have been made and are shown in Tables 2 and 3
for the case of heat transfer with a constant wall
temperature. The results shown in Table 2 for
situations where the fluid consistency is in-
dependent of temperature are in excellent
agreement for Graetz numbers > 10. Below this
value of Gz the equation proposed by Hirai [4]
becomes inaccéurate and thus his results no
longer agree with those of Jensen [14] or of the
present work.

The comparison of results shown in Table 3
is for situations where the fluid consistency is
dependent on temperature. As can be seen, the

Table 2. Comparison of the present work with other studies
for a constant property Bingham plastic (i.e. n = 1-0) with
R,, = 0-5 and constant temperature at the tube wall

Nuy
Gz
Jensen Hirai Present
[14] [4] work

10¢ 41 406 41
10® 189 189 189
10? 875 876 87
10 41 4-08 39

2 127 238 127
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Table 3. Comparison of the present work with that of Jensen [ 14]
for a temperature dependent Bingham plastic (i.e. n = 1.0)
with R, = 0-5 and constant temperature at the tube wall

Nuy
Gz
Jensen Present work
[14] (¢ =13 B=0634
13600 94 833
1130 31-0 283
105 119 119
9-88 48 477
1-68 1-07 1-07
Nu;
Gz
Jensen Present work
[14] @ =12 p=317
13600 830 80-4
1130 300 29-2
105 12-1 12:1
9-88 4-80 4-80
1-68 1-07 107

results are in good agreement for Gz < 1000.
At higher values of Gz agreement is not so good.
This is probably due to the fact that the tempera-
ture dependence model used by Jensen [14] was
of the Arrhenius exponential type and thus
differs from the type of model used here.

CONCLUSIONS

The procedure which has been developed
allows a detailed analysis of laminar flow heat
transfer to time-independent non-Newtonian
fluids in tubes to be carried out. Temperature-
dependent rheological properties are included
for the boundary conditions of constant tube
wall temperature or constant tube wall heat
flux. The solutions yield results which are
functions of a number of dimensionless groups
and as such should be of value in engineering
design.

A selection of computed results have been
presented graphically. Some interpolation is
possible for engineering design purposes but
more complete information is available else-
where [15].
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TRANSFERT THERMIGQUE LAMINAIRE DANS LES TUBES POUR UN FLUIDE DE BINGHAM
SENSIBLE A LA TEMPERATURE

Résumé—Cet article traite par voie théorique du transfert thermique dans les tubes circulaires pour un
écoulement laminaire de fluide non-newtonien sensible 4 la température dont la relation entre la tension
tangentielle 7 et la vitesse de déformation 7 est de la forme:

t =1, + K(D)"

o0 7, est une tension de fluage. » est une constante et K(T) est une fonction de la température. Ce modéle
peut concerner A la fois les comportements de loi puissance et du plastique de Bingham. On considére les
deux conditions aux limites de température pariétale constante et de flux thermique constant a la paroi
pour les cas du chauffage et du refroidissement. Les résultats du calcul sont présentés en nombre de Nusselt
fonction du nombre de Graetz 4 I'aide de groupes adimensionnels incluant les parametres liés 4 la dépendance
vis & vis de la température, aux propriétés rhéologiques et aux conditions pariétales. Cette méthode de
présentation est commode pour les ingénieurs. On peut aussi déterminer les profils de température, de
vitesse et les pertes de charge.

LAMINARER WARMEUBERGANG AN TEMPERATURABHANGIGEN
BINGHAM-FLUIDEN IN ROHREN

Zuesammenfassung-Dieser Artikel beschreibt die theoretische Behandlung des Wirmeiiberganges bei
laminarer Strdmung in Rohren mit kreisformigem Querschnitt fiir ein nicht-Newtonisches Fluid, wofiir
der Zusammenhang zwischen Schubspannung t und Anderungsrate der Schubspanoung j durch eine
Gleichung der folgenden Form beschrieben werden kann

t =1, + K(D

wobei 7, die Fliessspannung, n eine Konstante und K(7) ¢ine Funktion der Temperatur ist.

Dieses Modell kann also sowohl fiir exponentielles als auch fiir Bingham-plastisches Verhalten verwendet
werden. Die zwei Randbedingungen, konstante Wandtemperatur und konstanter Warmestrom durch
die Wand, sind sowohl fiir Heizen als auch fir Kiihlen behandelt. Die berechneten Ergebnisse sind
dargestellt durch Auftragung der Nusselt-Zahl als Funktion der Graetz-Zahl mit dimensionslosen Gruppen,
worin die temperaturabhiingigen Effekte, die rheologischen Eigenschaften und die Wandbedingungen
durch einen Parameter spezifiziert sind. Diese Darstellungsmethode ist {lir den ingenicurmissigen Bedarf
geeignet. Temperaturprofile, Geschwindigkeitsprofile und Druckabfall konnen ebenfalls bestimmt

werden.



LAMINAR HEAT TRANSFER

TEIIJIOOBMEH NPH JIAMUHAPHOM TEYEHMHU B TPYBAX BUHI'AMOBCHUX
HUIKOCTEN, 3ABUCAIIUX OT TEMIIEPATYPHI

Anmoramma-—B craTbe onucano TeOpeTHYECKOE HCCIea0BaHue TennoobMena OpH JaMNHADHOM
TeJeHMM HEHLIOTOHOBCKON KUAKOCTR B KPYIJIHWX TpybaX, JJIA KOTOPHX CBA3b MEMNY CABHU-
TOBHIM HAODAMEHNEM 7 K CKOPOCTBIO CABHTra y ONMUCHBA€TCA COOTHOIICHHEM BHUAA

T = 7,+ H(T)}",

rge T,—npemel TeKyuecTH, n—nocronaHad, a K(T )—dynkuun temmeparyput. Iloatomy
RaHHA® MOJeNh IPUMEHMMA KaK AJNA CTemeHHOM, TaK M ONA MIACTHYHON GMHraMoBCKoM
sKUAKoCTH . PellajoTca 8aiauy HarpeBa i OXJIaK/IEHAA ¢ TDAHUYHEIMY YCIOBUAME [IOCTOAHCTBA
TeMIIepaTyph CTeHKHM M [IOCTOAHCTBA TeNAOBOTO NOTOKA Ha CTeHKe. PeayabTaTH pacdera
IpeacTaBieEn B BHie rpaduxon sasucumoctu ymcaa Hyccenbra or umcna I'pstua, xyza B
KayecTBe IapaMeTPOB BXONAT GeapasmMepHHE KOMIJEKCH, BKIIOYAIOINMe TeMIEPATYPHYIO
3aBHCHMOCTb, PEOJIOFHYeCKHe CBOMCTBA U YCIIOBHA Ha cTeHKe. Takoft Meton mpencraBieRHA
BecbMa ymoGeH AJNA pelIeHMA NPAKTHYECKMX MH:KEHEPHHX 3amad. OH NO3BOJIAET TaKKe
paccuuTaT NpoduUIM CKOPOCTH, NPODUAN TeMIepaTypH U Nepenan KABJEHHUA.
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