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Akgrt--This paper presents a theoretical treatment oflaminar Bow heat transfer in circuiar tubes for a 
temperature-dependent non-Newtonian fluid for which the relationship between the shear stress, r, 
and the shear rate, i, can be described by an equation of the form 

where 7p is a yield stress, n is a constant and K(T) is a functron of temperature. This model can therefore 
cater for both power-law and Biigham plastic behaviour. The two boundary conditions of constant wall 
temperature and constant wall heat flux are considered for both beating and cooling situations. The 
computed resuits are presented by plotting a Nusaelt number as a function of the Graetz number with 
dimensionless groups specifying the temperature dependence effect, the rheologica1 properties and the wall 
conditions as parameters. This method of presentation is convenient for engkering design purposes. 

Temperature profiee, velocity profiles and the pressure drop can also be determined, 

NO~N~~ R, r/u [dimensionless) ; 
tube radius ; 71 temperature ; 
Brinkmann number, ii”+‘Ki/kl”p”” T, inlet temperature ; 
[dimensionless J ; wall temperature ; 
specific heat; F 

uy 
bulk outlet temperature; 

Graetx number, WCJkx [dimension- velocity; 
less] ; 11, mean velocity ; 
mean heat transfer coefficient for c,, mean velocity at the tube entrance; 
constant wall temperature ; co mean velocity at axial distance, x ; 
local heat transfer coefficient for U, 
constant wall heat flux; 

u/5 [dimensionless J ; 
u: mass flow rate; 

thermal conductivity; x7 axial distance coordinate ; 
function of temperature defmed by X, 
equation (8); 

kx/piia2Cp = x/Gz [dimensionless]. 

value of K(7) at inlet temperature If; Greek symbols 
flow behaviour index [dimensionless J ; fi, 

mean Nusselt number, 2&,./k 
parameter representing the tem- 

pYa”g=; ; 
perature dependence effect, filf 
[dimensionless] ; 

number, 
[dimensionless J ; 

24/k Bit constant characterising temperature 
dependent properties ; 

pressure ; 3-i shear rate ; 
wall heat flux ; 
radial distance coordinate; 

T&./T, [dimensionless] ; 
q,,,u/k’l; [dimensionless J ; 

2377 



2378 G. FORREST and W. L. WILKINSON 

fluid density ; 
shear stress ; 
wall shear stress ; 
(T - IQ/T [dimensionless] ; 

045, - ?J)/T [dimensionless]. 

1. INTBODUC~ON 

LAMINAR heat transfer to non-Newtonian fluids 
in tubes is a problem of considerable industrial 
significance and has received much attention 
in the past. 

Asymptotic Nusselt numbers for a variety 
of non-Newtonian fluids have been derived by 
Beek and Eggink [1] for both constant wall 
temperature and constant wall heat flux as 
boundary conditions. These solutions assume 
that the rheological properties of the fluid are 
independent of temperature and are only appli- 
cable to the region far removed from the tube 
entrance where both fully developed velocity 
and temperature profiles exist. Several other 
workers have derived solutions for the mean and 
local Nusselt numbers by assuming that the 
rheological properties are independent of tem- 
perature. For example, power-law fluids have 
been considered by Lyche and Bird [2] and also 
by Whiteman and Drake [3], Bingham plastics 
by Hirai [4] and also by Wissler and Schecter 
[S], Prandtl-Eyring fluids by Schenk and Van 
Laar [a]. Pigford [7] and Metzner et al. [8,9] 
have extended the Leveque approximation to 
give useful approximate solutions for heat 
transfer with constant wall temperature for a 
number of time-independent non-Newtonian 
fluids. 

The restriction that the fluid rheological 
properties are independent of temperature can 
be a serious assumption since, in many cases, 
this effect has a major influence on heat transfer. 
Several attempts [8-l l] have been made to take 
this effect into account and approximate 
solutions to the heat transfer problem which 
utilize an empirical correction factor to account 
for the temperature dependence of the fluid 
consistency, have been obtained. Christiansen 
et al. [12,13] have produced more exact 

solutions by solving the problem numerically, 
Their results are presented as a series of graphs 
of the mean Nusselt number plotted against the 
Graetz number with dimensionless quantities 
representing the rheology of the fluid as para- 
meters for the boundary condition of constant 
wall temperature. Jensen [14] has carried out 
similar work for ideal Bingham plastics. 

The work reported here considers heat transfer 
to a generalized Bingham plastic in tubes with 
constant walI temperature or constant wall heat 
flux. The effect of the temperature dependence 
of the fluid consistency is taken into account. 
This type offluid model also caters for Newtonian 
behaviour, power-law behaviour and ideal 
Bingham plastic behaviour. The results of the 
calculations are presented graphically in terms 
of dimensionless groups and as such should be 
convenient for engineering design purposes. 

2. FOBMULATION OF THE PROBLEM 

This work is concerned with heat transfer to 
non-Newtonian fluids, the rheological behaviour 
of which can be approximated by a temperature- 
dependent generalized Bingham plastic model 
of the form 

t=t,+K(7-)& t > ry 

. 
y =O; t $ ty (1) 

where r is the shear stress, zy is the yield stress 
and is assumed to be independent of temperature. 
$ is the shear rate, K( 1) is a fnnction of tempera- 
ture, ?: and n is a temperature-independent 
exponent which is less than unity for shear 
thinning materials and greater than unity for 
shear thickening materials. The assumption 
that the yield stress, T, is independent of 
temperature was also adopted by Jensen [14] 
who suggested that this effect is small compared 
with the temperature dependency of the fluid 
consistency and can thus be ignored. A possible 
explanation for this is that the yield stress is 
mainly dependent on a mechanical locking of 
the fluid which is essentially temperature in- 
dependent. It is anticipated that the model will 
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adequately describe the behaviour of many 
fluids of commercial ;.qterest. 

The problem of heat transfer in laminar flow 
in straight tubes will be considered for the two 
boundary conditions of constant wall tempera- 
ture and constant wall heat flux which, although 
ideahzed situations, are of relevance in the 
design of much heat transfer equipment. 

The following analysis is subject to certain 
constraints namely : 

The ilow is kminar and steady. 
The guid heat capacity, C, thermal con- 
ductivity, k, and density, p, are inddpendent 
of temperature and pressure. 
Isothermal flow is fully developed at the 
entrana to the heated section and the fluid 
temperature at this point is uniform and 
constant. 
The radiai velocity profile within the heated 
section will change as a result of changes in 
the rheological properties with temperature 
but it wiII be assumed that radial v&cities 
and axial velocity gradients will be small and 
can be neglected. 
Transfer of energy by ~ndu~on in the axial 
direction may be neglected. 
Thermal energy generation within the fluid 
by viscous dissipation or other means is 
negligible. 

Constraints (a)-(e) are not unduly restrictive 
in practice for many engineering problems. 
Constraint (f) is relaxed later in the paper. 

Equations of motion and fznergy 
With the above assumptions the equation of 

motion simplifies to 

ap la --p__ 
ax r aan) 

where @p/&c) is the axial pressure gradient and 
z is the shear stress at radius r. The corresponding 
energy equation is 

(3) 

where u and Tare the velocity and temperature 
respectively at radius r for a particular axial 
distance x. 

The equation of motion, i.e. equation (2x can 
be integrated by taking @p/ax) independent of 
r to give 

* 
7” -+ 

a 

If we introduce the following dimensionless 
quantities 

U = u/u’ 

R = r/a 

l-l = (T - 7J//‘1; 

we get, from equation (3x the energy equation in 
the following dimensionless form 

Uae ia 
-a-- 

8X R l3R 
(6) 

Also equation (4) becomes 

t = Rz,. (7) 

Rheological equationfir thejluid 
Before the problem can be solved it is necessary 

to specify the form of rc(T). The form used in 
this work is similar to that used by Mizushina 
and Kuriwaki [lo] and has been shown to be 
reasonable for many materials over the tem- 
perature ranges often encountered in industrial 
processes. It is given by 

where Ki is the value of K(T) at the fluid inlet 
temperature T and fli is a constant which 
character&s the temperature dependent proper- 
ties of the fluid Hence the rheologicai behaviour 
of the material is described by 
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Equation (9 was solved for the two boundary 
conditions of constant waII temperature and 
constant waII heat flux. This is discussed in the 
following sections. 

ROUNDARY CONDITXONS 

Constant wall temperature 
The boundary conditions for this problem are : 

At the tube inlet 8 = 0 at X = 0 for all R 

At the tube wall 8 = (T,/z - 1) (10) 

at R= 1 for all X 

where T, is the constant wall temperature. 

Constant wall heatflux 
The boundary conditions for this case are : 

At the tube inlet 8 = 0 at X = 0 for all R. 

kT 88 
At the tube wall q,,, = 7 x 

0 ’ w 

at R= 1 for all X (11) 

where q,,, is the constant walI heat flux. 

SOLUTION OF THE PROBLEM 

Velocity profile 
substituting for t in equation (7) and noting 

that i = - aqar gives 

Rearranging and putting dr = adR gives 

-du=+$i’ (R-;y” 

{l-+ ,&T - 7J))dR. (13) 

Equation (7) can be applied to the radial position 
at which the yield stress occurs. Thus, if r, is 
this radius, equation (7) may be rewritten as 

R, = zw/zW (14) 

where R, = r,,Ja. 
From equation (5) we get that 

(T - 7J = el; (1% 

and on substituting equation (14) and (15) into 
equation (13) we get 

-da=c 2 
(3 

l/n 
(R - R$“‘“(l + #M)dR (16) 

where 

s = 8i~* (17) 

Integrating equation (16), assuming no slip 
at the wall, gives 

1 

(1 f fis)(R - R$‘“dR; 

T > 7'y 

Equation (lg) refers to that part of the 
which is in shear flow. The portion of the 
for which r 6 r, flows as a solid plug i.e. 

u(at r < r$ = u(at rY). 

fluid 
fluid 

(1% 

The plug velocity, i.e. the value of a at R = R, 
is obtained by carrying out the integration in 
equation (18) and putting R = R, into the 
resulting equation. Equation (18) may be written 
as 

/, \i/n 
u=a z I, 0 

where 

I,=i(l+BB)(R-R,)‘“dr; z>z,, (21) 
k 

and 

I, = I, (atR =RJ; 75;7,. 

The mean velocity through the pipe is given by 

which after substitution for t( and R becomes 
1 

1_i- 
7, l’” 

Q 0 J 1,RdR. (23) 

0 
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This may be written as 

(24) 

where 

(25) 

Hence from equations (20) and (25) we get 

u = UJii = 1,/21,. (26) 
This set of equations for determining the velocity 
profile must satisfy the equation of continuity. 
This may be written in terms of the tube inlet 
conditions and conditions at a point a distance 
x down the tube as 

f, = ii* (27) 
where iii is the mean velocity at inlet and ii, is the 
mean velocity at distance x down the tube. 
It is obvious from equations (21), (24) and (25) 
that for ii to remain constant down the heated 
section as the temperature and hence 8 changes, 
the value of r, must alter. By substituting for u 
from equation (24) equation (27) may be written 

(r~‘“13i = (2~‘“13~. 08) 

By dividing both sides of equation (28) by r$ we 

get 

(kgi = (2); (29) 

The quantity (I,/R~)i representing the conditions 
at the tube inlet is obtained from the isothermal 
velocity profile and is a constant for a particular 
value of n and T,_ Since the value of 7, changes 
during heat transfer, then the value of R, 
(i.e. r&J must also change (z,, being assumed 
constant for a given problem). Also, since the 
determination of the velocity profile depends 
on the value of R, and vice versa, an iteration 
procedure was adopted to obtain the value of 
U at each axial position down the heated section. 

Substituting for U in quation (9 gives 

--_=-- (30) 

SOLU’ITONS 

The equations were solved numerically to 
yield solutions as functions of a number of 
dimensionless parameters, viz : 

Constant wall temperature 

for the boundary conditions described earlier. 
The quantities n and r,, are obtained by rheo- 
logical measurements and the value of rW at the 
tube inlet is calculated for the particular flow 
rate required. Subscript i refers to conditions 
at the tube inlet. 

(Y&/Q is designated 4 and for heating 4 > 1 
and for cooling 4 < 1. 

Constant wall heat flux 

u 8 R,Xl R,X =f[Gz, n, c+h. b h~/~~l (32) 

for the boundary conditions described earlier. 
The quantity (q&n represents the constant 
wall heat flux boundary condition and is a 
measure of the dimensionIess temperature 
gradient at the tube wall, i.e. (&I/a7’),. It is 
designated $ and for heating JI > 0 and for 
cooling $ < 0. 

The numerical technique used to solve 
equation (30) is described in detail elsewhere 
[15]. It consisted of a Crank-Nicholson, Thomas 
algorithm implicit finite-difference scheme using 
100 radial increments and an initial axial step 
length of 10e6. It was possible to vary these 
step lengths to allow smaller increments to be 
used near the tube inlet where changes occur 
most rapidly and larger step lengths to be used 
further downstream. At each axial position an 
iteration procedure based on equation (29) was 
set up to calculate R, and hence the velocity 
profile. 

Definition of Nusselt numbers 
It is useful to present the results of heat 

transfer calculations by plotting a Nusselt 
number against the Graetz number, Gz. 
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(a) Constant wall temperature. For this case 
a mean Nusselt number can be defined as 

KT = 2a&k (33) 

where h is the heat transfer coefficient, the 
subscript Tindicates constant wall temperature 
and the bars denote mean values. The heat 
transfer coefficient hr for a tube of length x is 
defined in terms of the terminal temperatures as 

liT= 
WC&T, - n 

2lcaxf T, - 4 (T +m 
(34) 

where To is the bulk outlet (i.e. cup mixing) 
temperature, and W is the fluid mass flow rate. 
Further we have that 

~C,(T, - 7~ = 2xcPpi m(T - Qdr (35) 
0 

hence 

2pC,iru(T - Qdr 

Nu, = v 
I w-m+w 

(39 

By substituting for 0, R and Gz as given by 
equation (5) and noting that 

a, w 1, - - 
u = 21, = 27&p I, 0 

(37) 

we finally get 

Gz 13~ xi,=- 
IL e,--*e, 

(38) 

where 8, is the dimensionless bulk outlet 
temperature, i.e. 8, = (To - Q/q, which can be 
shown to be given by [ 151 

(39) 

(b) Constant wall heat_&. For this case it is 
useful to define a local Nusselt number as 

N% = 2ahdk (40) 

where subscript 4 denotes constant wall heat 
flux. The local heat transfer coefficient h, is 
defined as 

(41) 

where (ZTl;ir), is the wall temperature gradient 
at axial position. x. Thus equation (40) becomes 

/ ;T - To) w 
W, 

which in terms of the dimensionless quantities 
described earlier is 

N”q - 8, - e. 
-2*. (42) 

The computed Nusselt numbers as defined by 
equations (38) and (42) are plotted against the 
Graetz number for a range of values of the 
dimensionless parameters, n, (z,/Zw)R B and 4 or 
J/. These parameters describe the particular 
problem to be investigated and are used as 
input data for the computer program which was 
developed [15] to carry out the numerical 
solutions. 

DISCUSSION OF RFSULIS 

The computed results are shown graph&all!- 
in Figs. l-15 and the main features are discussed 
below. The quantity (r,./t,Ji is designated R,i. 

(a) Constant wall temperature 
For this case the heat transfer resuits are 

presented graphically as plots of %r vs Gz. 
Fluid consistency independent of temperature. 

Figure 1 shows the effect of the parameter. 
R,, i.e. (ry/r,,&, on heat transfer to fluids with 
n = 1-O (i.e. Bingham plastic materials). Since 
the fluid consistency is constant the fluid velocity 
profile remains constant at its isothermal value 
during heat transfer. Isothermal velocity profiles 
for n = 1-O and R,< = 0,05 and @7 are shown in 
Fig. 2. It can be seen that for a given value of n. 
as R, increases, the velocity profile becomes 
flatter, i.e. velocity gradients are increased in 
the tube wall region and decreased near the tube 
centre. This increase in the velocity gradient 
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I IO 0’ IO' lo4 
02 

FIG. 1. & vs Gz for the heating and cooling of tcmperature- 
independent Singham plastics with constant temperature at 

the tube wall. 

FIG. Z Isothermal velocity pro&s for Bingtmm piastics in 
laminar flow. 

I 

J 
0 
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FIG. 3. Rii, vs Gz for the heating and cooling of temperature+ 
independent generali& Bingham plastics with constant 

temperature at the tube wall. 
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near the tube wall enhances the heat transfer 
rate as shown by the increase in Gr.at a given 
value of Gz as R, increases, in Fig. 1. 

Figure 3 shows the effect of n on heat transfer 
for a value of R,, = O-5. The isothermal velocity 
profiles for a number of values of n with R, = 05 
are shown in Fig 4. As can be seen, as n decreases 

mtt!mrmt ntawy pmtil6a 
R,.Od 

16 Il.20 
I 

u ,,oii’“; 

0 0.5 IO 
R 

FIG. 4. Isothermal velocity profiles for generalized Bingham 
plastics in laminar flow. 

for a given value of R, the velocity gradients are 
again increased in the wall region leading to an 
increase in the heat transfer rate as shown in 
Fig. 3. 

Fluid consistency dependent on temperature. 
For this situation the velocity profile changes 
during heat transfer. For heating, i.e. (p > 1, the 
increase in temperature in the wall region 
decreases the fluid consistency here. This leads 
to increased velocities near the tube wall. 
Also for situations where R,, > 0, i.e. where a 
section of fluid near the tube centre flows as a 
solid plug, since the velocity profile is changing 
the value of r,,, and hence R, must also be 
changing For heating, although the shear rate. 
), (i.e. the velocity gradient) increases near the 
wall during heat transfer, the constraint of 
constant wall temperature means that the shear 
rate actually at the wall decreases. Thus it can 
be seen from equation (1) that the wall shear 
stress decreases and so the value of R, which 
represents the size of the solid flowing plug, 
increases during heating (i.e. R, increases as 

0 OS IO 
R 

FIG. 5. Development of the velocity profile during the 
heating of a temperature-dependent generalized Bingham 
plastic (n = OS. rjrv = C-5) with constant temperature at 

the tube wall. 

Gz decreases). This is shown in Fig. 5. Far 
downstream, i.e. where Gz is small the tempera- 
ture becomes uniform across the tube at a value 
approaching T, and the velocity profile is then 
fully developed. If the fluid had had no yield 
stress, i.e. tg and hence (r&J is equal to zero, 
the velocity profile would have reverted back to 
its isothermal value when the temperature 
became uniform across the tube. However, the 

u 

Gz.43.3 

R 

FIG. 6. Development of the velocity profile Ior the cooling of 
a temperature-dependent generalized Bingham plastic 
(n = 05, TJr, = 05) with constant temperature at the 

tube wall. 
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FOG. 7. Nii, vs Gz for the heating and cooling ofo temperature- 
dependent generalized Bingham plastic (n = 05, 7,,kW = 05) 

with constant temperature at the tube wall. 

FIG. 8. & vs Gz for the heating and cooling of a temperature- 
dependent gcneralkl Bingham plastic (n = 2-O,r& = O-5) 

with constant temperature at the tube wall. 

ml.0 
102- 

Nu, 
IO - 

I I I I 

I IO IO2 IO' IO4 lo5 

FIG. 9. Nu, vs Gz for the heating and cooling of tcmpcraturc- 
independent Bingham plastic with constant heat flux at the 

tube wall. 
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FIG. 10. Nu, vs Gz for the horrting and cooiing of temperature- 
independent gcocralii Bin&am plastics with constant 

heat flux at the tube wall. 

existence of a yield stress and the change in 2, 
changes the size of the flowing plug and so when 
r,, # 0 the exit velocity profile is not the same 
as that at the inlet to the heated section. For 
cooling the wall shear stress increases during heat 
transfer and so R, and hence the size of the 
flowing plug, decreases with decreasing Graetz 
number and also the velocity gradients in the 
wall region are decreased with decreasing Gz. 
These effects are shown in Fig 6. The increase 
in velocity gradients in the wall region during 
heating enhances heat transfer while the decrease 
during cooling retards the heat transfer rate as 
shown in Figs. 7 and 8 for R,, = 05 with 
n = 05 and 2.0. 

(b) Constant wall heat flux 

For this case the heat transfer results are 
presented graphically as plots of Nu, vs Gz. 

Fluid consbtency independent of temperature. 
The effect of R, on the heat transfer results is 
shown in Fig 9. As for the constant wall 
temperature case the increase in velocity 
gradients in the wall region as R, increases, 
increases the heat transfer rate, and hence at a 
given value of Gz, the value of Nu, is increased. 
Figure 10 shows the effect of n on the heat 
transfer results for R,, = 05. Again. as for the 
constant wall temperature case, the velocity 
gradients in the wall region, and hence the heat 

transfer rate, increase as n decreases. Far 
downstream (Gz smalQ the shape of the fluid 
temperature profile becomes constant and the 
value of (0, - 6& thus becomes constant. It can 
be seen from equation (42) that when this 
occurs, the value of Nu, becomes a constant and 
some typical values are shown below. 

Table 1. Asymptotic loco/ Nussek 
nunrhen Ilf Gz < 1 

_- _-..____ 

n R, N% 

c-5 o-5 5.604 
1-O @5 5.136 
2.0 @5 4.811 
1-o @7 5.863 

Fluid consistency dependent on temperature. 
For this case the velocity profiles and the size 
of flowing plug change during heat transfer in a 
way similar to that of the constant wall tempera- 
ture case. This gives an increase in heat transfer 
rates for heating, I,+ > 0, and a decrease for 
cooling, # < 0. The development of the velocity 
profilesfor+ = + 01isshowninFigslland12 
and the heat transfer results for these cases in 
Figs. 13 and 14. The effect of the temperature 
dependent fluid consistency on heat transfer is 
not as marked for the constant wall heat flux 
case as it was for the constant wall temperature 
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-a 
t n=os, +04.8=l0 

I.6 - 

- Gz404,u3. 97Bo 

u - 

FIG. 11. Development of the velocity profile during the 
heating of a temperature-dependent genera&d Bingham 
plastic (n = 05, r,/t, = OS) with constant heat flux at the 

tube wall. 

0 OS I.0 

R 

FXG. 12. Development of the velocity profk during the 
cooling of a temperaturedependent generalized Bingham 
plastic (n = 05, t& = @5) with constant heat flux at the 

tube wall. 

FIG. 13. Nu, vs Gr for the heating and cooling of a 
tempcraturedtpcndmt generaliked Bingham plastic 
(n = 05,7& = 0-S) with constant heat flux at the tube wall. 

FIG. 14. Nu, vs Gr for the heating and cooling of a 
temperature-dependent generalized Singham plastic 
(n = 2-O. .L& = 05) with constant heat flux at the tube wall. 
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situation. This is because unlike the constant wall 
temperature case the tube wall is not subjected 
to a sudden large increase in temperature at the 
start of the heated section but instead undergoes 
a gradual increase under the influence of the 
constant wall heat flw. Thus the curves for 
fi = 0 and B = 10 on Figs. 13 and 14 do not 
differ greatly. 

The discontinuation of the curves for $ < 0 
on Figs. 13 and 14 is due to the fact that using 
the fluid inlet temperature as the reference 
temperature in equation (s) implies that the 
rheological model, i.e. equation (1). can not be 
used for situations where there is a large 
amount of heat removed at the wall. To cater 
for all conditions a new reference temperature, 
T,, lower than any other temperature obtained 
would be necessary, and hence two parameters ; 

q,WCd ad TJL would be required to 
describe the wall and inlet conditions. (N.B. for 
constant wal3 temperature these parameters 
would be T,/T, and TJT,.) 

Far downstream the value of Nu, for /3 # 0 
does not become constant since the temperature, 
and hence the fluid consistency and velocity 
profiles, are continually changing. 

Viscous dissipation 
When fluids which are extremely viscous are 

sheared large amounts of heat can be generated 
due to the viscous dissipation of energy. 
Although this effect has not been included in 
this report it has been considered elsewhere [15]. 
For this situation the energy equation becomes 

where the second term on the right represents 
the energy dissipation due to viscous shearing. 
This may be written in terms of the dimensionless 
variables described earlier as 

11,ae 1 a 86 ---=_-_ 
2I;ax RaR RZ i i 

- Q”” (1 + /IB) 
I;+ly+ 1 1 

(44 

where 

Br 
ii”+‘K, _ 

kT&- 1 (45) 

and represents the magnitude of the shear 
heating effect. Solutions to equation (44) were 

FIG. 15. %, vs Gz for heat transfer to a Bin&m plastic 
(n = 1-O. R,, = 05) when the effects of viscous dissipation 

are significant. 
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obtained for all situations where ‘tY = 0 and for 
all cases where z, > 0 with /? = 0. However, 
when both ‘fp and jI are non-zero, i.e. the fluid 
considered exhibited a yield stress and its 
consistency was dependent on temperature, 
solutions were not always possible at low 
values of the Graetz number due to instability 
difficulties with the numerical techniques used 
[ZS]. Some typical examples of some of the 
solutions that were obtained are shown in 
Fig. 15 in which the broken lines represent 
negative Nusselt numbers. 

COMPARISON WITH PRJCVIOUS WORK 

The results of the present work have been 
shown to be in excellent agreement with those of 
other workers for situations where the yield 
stress is zero [ 15 J. There are little data available 
to check the results for situations where 7,, is not 
zero but some comparisons with other work 
have been made and are shown in Tables 2 and 3 
for the case of heat transfer with a constant wall 
temperature. The results shown in Table 2 for 
situations where the fluid consistency is in- 
dependent of temperature are in excellent 
agreement for Graetz numbers > 10. Below this 
value of Gz the equation proposed by Hirai [4] 
becomes inatiurate and thus his results no 
longer agree with those of Jensen [14] or of the 
present work. 

The comparison of results shown in Table 3 
is for situations where the fluid consistency is 
dependent on temperature. As can be seen, the 

Table 2. Comparison qf the present work with other studies 
for a constant property Binghum pIa& (i.e. n = 1.0) with 

5, = @5 and constant temperature at the tube wall 

K 
GZ 

JCrtWtl Hirti Present 
Cl41 c41 work 

lo4 41 406 41 
lo3 18.9 18.9 18.9 
lo2 8.75 8.76 8-7 
10 4.1 4-08 3.9 
2 1.27 2.38 1.27 

N 

Table 3. Comparisonofthe present work with thatdJmsen [ 141 
for a temperature dependent Bin&am plastic (i.e. II = 1.0) 

with R,, s 05 ad constant temperature at the tube wall 

G.2 

13600 
1130 
105 

9.88 
l-68 

Jensen 
r141 

94 
31-o 
11.9 
4.8 
1.07 

=r 

Present work 
(4 = 1.3 fi = 63.4) 

83.3 
28.3 
11-9 
4.77 
1.07 

G.2 

13600 
1130 

105 
9-88 
1.68 

JelISUl 
r141 

83.0 
3@0 
12.1 
480 
l-07 

1Ji;, 

Present work 
($ = 1.2 /I = 31.7) 

80.4 
29.2 
12-l 
480 
I.07 

results are in good agreement for Gz < 1000. 
At higher values of Gz agreement is not so good. 
This is probably due to the fact that the tqra- 
ture dependence model used by Jensen [14] was 
of the Arrhenius exponential type and thus 
differs from the type of model used here. 

CONCLUSIONS 

The procedure which has been developed 
allows a detailed analysis of laminar flow heat 
transfer to time-independent non-Newtonian 
fluids in tubes to be carried out. Temperature- 
dependent rheological properties are included 
for the boundary conditions of constant tube 
wall temperature or constant tube wall heat 
flux. T’he solutions yield results which are 
functions of a number oi dimensionless groups 
and as such should be of value in engineering 
design. 

A selection of computed results have been 
presented graphically. Some interpolation is 
possible for engineering design purposes but 

more complete information is available else 
where [15]. 
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TRANSFERT THERMIGUE LAMINAIRE DANS LES TUBES POUR UN FLUIDE DE BINGHAM 
SENSIBLE A LA TEMPERATURE 

R&u&--Cet article traite par voie thiorique du transfert thermique dans les tubes circulaires pour un 
icoulement laminaire de fluide non-newtonien sensible a la temperature dont la relation entre la tension 
tangentielle r et la vitesse de deformation : est de la forme: 

r I T, + K(F) j” 

oi ry est une tension de fluage. n est une constante et K(T) est une fonction de la temperature. Ce modtle 
peut concemer a la fois les comportements de loi puissance et du plastique de Bingham. On considere les 
deux conditions aux limites de temperature pa&ale constante et de flux thermique constant ii la paroi 
pour les cas du chauffage et du refroidissement. Les r&hats du calcul sont present& en nombre de Nusselt 
fonction du nombre de Graetz a l-aide de groupes adimensionnels in&ant les paramttres lie&t la dependance 
vis a vis de la temperature, aux propriCtC rheologiques et aux conditions parietales. Cette methode de 
presentation est commode pour les ingenieurs. On peut aussi determiner les proiils de temperature, de 

vitesse et les pertes de charge. 

LAMINARER WiiRMEUBERGANG AN TEMPERATURABHANGIGEN 
BINGHAM-FLUIDEN IN ROHREN 

7mwDieser Artikel bescbreibt die theoretische Behandlung des Wiirmeiiberganges bei 
laminarer Strbmung in Rohren mit kreisf8rmigem Querschnitt ftir ein nicht-Newtonisches Fluid, wofiir 
der Zusammenhang zwischen Schubspannung r und &tderungsrate der Schubspannung j durch eine 
Gleichung da folgenden Form beschrieben werden kann 

wobei 5) die Riessspannung, n eine Konstante und K(r) eine Funktion der Temperatur ist. 
Dieses Modell kann also sowohl fur exponentielles als such fiir Bingham-plastisches Verhalten verwendet 

werden. Die zwei Randbedingungen, konstante Wandtemperatur und konstanter Wgrmestrom durch 
die Wand, sind sowohl fiir He&en ale aucb fiir Kiihlen behandelt. Die berechneten Ergebnisse sind 
dargestellt durch Aufiragungder Nusselt-Zahl als Funktion der Graetz-Zahl mit dimensionslosen Gruppen. 
worin die temPeraturabhgn@gen Effekte, die rheologischen Eigenschaften und die Wandbedingungen 
durch einen Parameter spezifiziert sind. Diese Darstellungsmethode ist fib den ingenieurm&ssigen Bedarf 
gee&ret. Temperaturprofie, Geschwindigkeitsprofile und Druckabfall kbnnen ebenfalls bestimmt 

werden . 



LAMINAR HEATTRANSFER 2391 

TEIIJIOOBMEH IlPEl JIAMHHAPHOM TEYEHkiH B TPYBAX BBHI'AMOBCKI4X 
lWi)JKOCTEti, 3ABEICFIII&IX OT TEMI-IEPATYPbI 

hw~mqw~--B cTaTbeonucanoTeopeT~rlecKoenccne~oBaKneTenaoo6MeKanpunaMsHapHo~ 

Te~eHHH HeAblOTQHOBCKO~ HIEI~KOCTU B KpyrJlbnr TpybaX, XJIH KOTOpNX CBli3b MelKJQ' CAB&i- 

ro~bw KanpKmemieM TU cKopocTblo c~mra~onacbIBaeTcK cooTHou3emienf mfia 

7 = T"+K(T)jn, 

rge 7,-npeaen TeKyYeCTH, n-nOCTOfiEiBaR, a K( T )+~HKIJHR TeMnepaTypbL noa~ordy 

_qaHHaR MOAeJfb IIpHMeHHMa KPK &Vi CTelleHHOit, TPK H &TlR IlJlaCTH'lliOZt 6BKraMOBCKoZt 

~K~KOCTU.Pe~aIoTCcR3~a~KH~peBaKOX~a~AeHHRC~paHKYHblMIlyC~OBURMEl~OCTORHCTBa 

TeMnepaTypbI CTeHKH El IIOCTOKHCTBB TeUAOBOl'O IlOTOKa Ha CTeHKe. Pe3yJlbTaTbl paWeTa 

IIpe~cTaBJfeHbI B BElJJe rpa@!KOB 3aBHCIlYOCTM %WJIa HyCCenbTa OT 9EICJIa rp3TUa, Kfna B 

KayecTBe napanaeTpoB BXOPRT 6eapaaueptue KOMrIneKCu, BKJIIoYaIolQHe TeMnepaTypHylO 

BaBHCRMOCTb, peOJlO~U'ieCKHe CBO#&Ba Ii yCJlOBHK Ha CTeHKe. TaKofi MeTOH Ilpe~CTaB~eHHR 

BeCbMa yno6ea JJJIR peU.leHKR IlpaKTRYeCKHX iiH?Kt?HepHkJX 33A3q. OH llO3BOJIReT TaKWe 

paccmTaT npo&ni CK~~OCTK,II~~I@~JIH TemepaTypbl II nepena AaBseHwu. 


